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Abstract

In this paper we propose a framework for assessing the risk associated with de-
ploying a machine learning model in a specified environment. For that we carry
over the risk definition from decision theory to machine learning. We develop and
implement a method that allows to define deployment scenarios, test the machine
learning model under the conditions specified in each scenario, and estimate the
damage associated with the output of the machine learning model under test. Using
the likelihood of each scenario together with the estimated damage we define key
risk indicators of a machine learning model.
The definition of scenarios and weighting by their likelihood allows for standardized
risk assessment in machine learning throughout multiple domains of application.
In particular, in our framework, the robustness of a machine learning model to
random input corruptions, distributional shifts caused by a changing environment,
and adversarial perturbations can be assessed.

1 Introduction

With the deployment of machine learning (ML) models in safety and security critical environments,
risk assessment becomes a pressing issue. Failure modes of a given ML model must be identified and
the likelihood of occurrence and severity of the damage caused by failure must be assessed. In this
work, we focus on failures that result from input perturbations and provide a framework that allows
to integrate different sources of input perturbations and to compute general risk scores for a given
network and operational environment. These key risk indicators (KRIs) can guide the decision on
whether it is safe and secure to deploy a given ML model in a specified environment.

For the evaluation of ML risk, we consider adversarial input data and corrupted input data, which can
be used to evaluate ML security and ML safety, respectively. In particular, to qualify as adversarial
input data, we assume that a perturbation on the input is specifically crafted to maximize the difference
between a ML model’s output and the human interpretation of that same input. On the other hand,
corrupted input data is usually generated ML model agnostic and follows a somewhat natural
distribution of input data or naturally occurring noise.

In recent years, it has become a well-known fact that neural networks (NN), a subset of ML models,
are susceptible to adversarial perturbations Goodfellow, Shlens, and Szegedy (2015) and various
algorithms have been proposed to compute such perturbations effectively (known as adversarial
attacks). It is important to note that due to the transferability of attacks between NN that perform
a similar task, an attacker does not need to have access to the attacked NN to successfully craft
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Figure 1: Overview of the proposed key robustness indicator computation method, which is explained
in Section 4

adversarial perturbations Liu et al. (2017). Furthermore, adversarial attacks are not merely a fragile
phenomenon but can also be planted in the real world to fool NNs Kurakin, Goodfellow, and Bengio
(2017).

Alongside adversarial attacks a large number of adversarial defenses that are designed to detect and/or
mitigate the effect of adversarial noise have been proposed. However, typically a few months after a
defense has been published, an attack that circumvents the detection and mitigation mechanism of
that defense is found Carlini and Wagner (2017b); Athalye, Carlini, and Wagner (2018).

This attack and defense arms race has led to the introduction of formal verification algorithms of
NNs such as the seminal work of Katz et al. (2017). These algorithms are used to verify that around a
given set of input points the NN’s output does not change for perturbations up to a certain size usually
measured in either the `0, `2, or `∞ norm. However, such formal verification methods do not scale
to larger, industry relevant tasks without sacrificing rigor. Furthermore, realistic attack scenarios or
image corruptions which are usually not bounded in some `p norm render the formal verification
techniques inappropriate in these situations.

In Tian et al. (2018) and Pei et al. (2017) application-oriented robustness evaluation procedures were
proposed that explicitly take a more realistic attack and corruption scope into account. As an example,
instead of simply limiting the `2 norm of a possible perturbation, the adversarial image transformation
must be a rotation or change in brightness of the original image. The consideration of realistic image
corruptions is key for risk assessment since a highly damaging perturbation that cannot occur in
practice or, if at all, with vanishing probability, demands less action than a less problematic but still
harmful perturbation that occurs regularly.

Therefore, we propose a framework that lets deployers of ML models define the possible pertur-
bations and their respective magnitude and likelihood to set up realistic test scenarios. Then this
scenario dependent robust performance is systematically evaluated by the introduction of KRIs.
These indicators allow for comparability of ML models with respect to their robustness in different
operational environments. This approach enables well-founded decisions on whether a ML model is
fit for application. An overview of our method is given in Figure 1. The input data consists of a ML
model that is to be tested, previously designed deployment scenarios, and a severity estimation in the
form of a loss function, that computes a damage associated with the ML model’s output. From these
inputs, we compute a risk tensor that is used as data-storage to be able to extract the required risk
indicators by aggregation and filtering.

Next to estimating ML risk, our method can also be used to understand the failure modes of a ML
model, or in particular the reason for success of implemented adversarial defenses. Specifically,
throughout this paper, we make the following contributions.
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• We provide a framework in which the risk associated with deploying ML models in specified
environments can be assessed in a standardized way.

• We provide a data-efficient tensor based method for storing robustness information on a
given NN that can be queried and filtered to extract KRIs.

• We implement and test our framework on a set of image classifiers for the CIFAR10 dataset
Krizhevsky, Hinton, and others (2009) to identify robustifying features of the training
process or NN topology.

Our paper is organized as follows. In the next section we describe our setting and compare risk and
robustness definitions common in ML to the risk definition from statistical decision theory. After that,
we explain how we can apply the latter in the context of ML. For that we present a light-weight data
structure that allows for scenario-based risk assessment of a ML model. We illustrate our method in
an image classification case study, in which we identify the safest model for classifying images under
a set of sensor, weather induced, random, and adversarial perturbations.

2 Background

We restrict our presentation of the theoretical background to classification as this allows for a more
concise notation. However, it is important to note that our considerations immediately carry over to
more complex tasks such as semantic segmentation or object detection.

We denote a classifier as fc : Rnx → Rnc , where nx and nc are the length of the input vector (e.g. a
vectorized input image) and the number of classes, respectively. Let X = (X,F ,P) be the probability
space of inputs and f̄c : Rnx → Rnc be the true classifier that maps each input x ∈ X to the correct
class (in one-hot encoding).

The most common concept of (adversarial) ML robustness is based on the smallest perturbation
necessary to provoke an incorrect classification Fawzi, Fawzi, and Frossard (2018), i.e.

ρ1(fc,X , f̄c) := Ex∼X (∆adv(fc, f̄c, x)),

where

∆adv(fc, f̄c, x) = min
r∈Rnx

‖r‖2

s.t. arg max fc(x+ r) 6= arg max f̄c(x).

The value of ρ1 is an important metric for the investigation of ML models Mickisch et al. (2020).
However, it only provides the mean distance of x ∼ X to the decision boundary. Neither the severity
of the misclassification on the application nor the likelihood of occurrence of the critical perturbation
r are considered.

A related property is the so called cross Lipschitz extreme value for network robustness (CLEVER)
score of a classifier introduced in Weng et al. (2018). For CLEVER, the maximum of the norm of
the gradient in a ball around a test input value x is estimated because it can be used to predict the
distance of x to the decision boundary. To arrive at the CLEVER score, the mean value over the
maximal gradients in balls around x ∼ X is computed.

In Madry et al. (2018) a loss function L is used which allows to quantify the effect of misclassification
in the environment of the ML model under test. Using L, the authors define the adversarial risk

ρ2(fc,X , f̄c) := Ex∼X
(

max
r∈S

L(fc(x+ r), f̄c(x))

)
,

where S is a set of admissible perturbations. This definition works well when evaluating ML models
in the adversarial setting to assess the mean of the maximal damages an adversary could potentially
have on the deployed ML application in a specified environment. However, for general risk assessment
this worst case definition does not apply. For that, we need a definition that also takes the probability
of each perturbation into account.

To find such a definition, we turn to statistical decision theory and view the risk of deploying a ML
model as the risk of a statistical decision making process.
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Definition 1 Risk of a statistical procedure Berger (1985)
Let X be a probability space defined as above and let A be an action space. Furthermore, let
d : X → A be a deterministic decision function. Then the risk of d with respect to a loss L in the
setting of X is defined as

R(d) = Ex∼XL(d(x)) =

∫
X

L(d(x))dP(x).

For a randomized decision function d∗ : X × Dx → A with the parametric probability space
Dx = (N,G,Px) we have that

R(d∗) =

∫
X

∫
N

L(d∗(x, δ))dPx(δ)dP(x)

This definition of risk for a deterministic decision function is well-suited for risk assessment of a ML
model on unperturbed (test) data. On the other hand, the double integral formula is a good starting
point for general ML risk assessment since it allows to cover both the original data distribution and
possible perturbations. In the following we explain how this definition of risk can be applied to
evaluate ML models.

3 Risk Definition for Machine Learning Applications

To utilize the risk definition from decision theory in ML, we translate all terms from Definition 1
to the ML domain. Our starting point is the randomized setting with the decision function d∗. First,
we propose to decompose d∗ into a deterministic and a stochastic part, which represent the ML
model and the input noise, respectively. Note that some ML models include randomization such as in
some proposed adversarial defenses (Xie et al. (2018) and Meng and Chen (2017)). This additional
randomization that is part of the ML model and that is not caused by input noise can be encompassed
similarly by decomposing the ML model into a deterministic and a randomized part. Then for the
evaluation of a randomized ML model a third integral is added.

After that decomposition, X and Dx immediately carry over to the ML setting. X represents the
underlying data distribution and Dx represents natural and artificial noise. The interpretation of the
loss and the decision function depend strongly on the specific use case. When the ML model is
deployed to autonomously take actions, then the ML model is directly the decision function and the
loss can simply rate the ML model’s decisions. However, if the ML model is used for data analysis
and only implies decisions within a more complex system we must either introduce a function that
maps the ML model’s output to a decision or incorporate the cost associated with worse decisions
caused by faulty data analysis into the loss function. We propose to use the latter approach since this
reduces the overall complexity of the evaluation.

Using the above considerations, we define the risk of deploying a classifier fc in an environment X
with perturbations Dx by

ρ(fc,X ,Dx) =

∫
X

∫
N

L(fc(x+ δ))dPx(δ)dP(x), (1)

where L is a loss function that maps the classification to the loss of the resulting decision. Note that
a possible explicit dependence of L (an thus ρ) on f̄c and x is omitted in (1). Furthermore, in the
adversarial setting, Dx can also depend on fc.

Before explaining how (1) can be approximated, we give a few examples to roughly sketch the scope
of our definition of risk.

The adversarial risk from Madry et al. (2018) is encompassed by our framework. This can be seen by
choosing L as training loss, and Dx as space of adversarial perturbations computed as in Madry et al.
(2018) that occur for the given target image x with probability one.

When an adversarial defense is proposed, the robustness evaluation is normally performed by checking
the decrease in accuracy for different perturbation budgets. In our framework, this translates to a
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computation of ρ with

L(fc(x+ δ)) = 1arg max fc(x+δ)=arg max f̄c(x),

for different noise distributions Dx, where 1 is the indicator function. Note that in this setting, to
address different perturbation budgets, we can compute the risk multiple times for all different
perturbation budgets.

We now describe the use case that is the main motivation for this work. When choosing a ML model
as vision system for a self-driving car, it must be determined which model leads to the minimal risk
when deployed. To assess the risk associated with deploying a ML model, the environment in which
it is deployed is described using the natural distribution of input images X and the noise N . As an
example, the model might be deployed in an urban area (which is described by X ), in which fog and
rain occur regularly and, moreover, there is a 0.1% chance for an adversarial perturbation created
with a transfer attack on one of the street signs (which is covered by an appropriate choice of N ).

Furthermore, a loss function that estimates the possible damage of a segmentation output is defined.
A detailed description of such a loss function is beyond our scope. However, it is important to note
that a simple measure such as the sum of misclassified pixels does not necessarily reflect the possible
damage. A pedestrian not being detected on non-drivable area is less taxing than a pedestrian being
missed on an area that is otherwise classified as drivable.

We emphasize the fact that our risk definition for ML applications via the double integral over the
natural data distribution and the (possibly adversarial) noise allows a realistic description of the
environment in which the ML model is deployed. On top of that, the loss function within the risk
definition can be designed to weight each classification error based on its severity with respect to the
given applications.

4 The Key Risk Indicator Tensor

We now turn to the computation of ρ for given L,X , and Dx. For that, we propose to approximate
the double integral (1) using a Monte Carlo simulation such that we have

ρ ≈ ρ̂ =
1

nxnδ

nx∑
i=1

nδ∑
j=1

L(fc(xi + δj)),

where xi and δj are samples from X and Dx, respectively. This straightforward approach works well
for fixed L, X , and Dx. However, when X or Dx are changed (e.g. if new scenarios are added), all
computations have to be carried out again which is computationally taxing. Therefore, we propose a
light-weight data structure from which ρ̂ can be extracted that allows for more flexibility.

The basis for reusing inference results of a classifier fc for different deployment scenarios in which ρ̂
is evaluated is the composition of the scenarios from sets {Xi}nX

i=1 and {Dxi}nD
i=1. Then a set of risk

values {ρ̂i}nXnD
i=1 can be computed and the final risk value ρ̂ can be obtained as a convex combination

of the elements ρ̂i as

ρ̂ =

nXnD∑
i=1

αiρ̂i, with
nXnD∑
i=1

αi = 1, (2)

where αi can be used to weight different scenario components from which the deployment scenarios
are constructed. Note that all different ρ̂i (and therefore Xi and Dxi) need not be known at the same
time. On the contrary, scenario components can be added later to further refine the description of the
deployment scenario.

Another advantage of separating ρ̂ into different components is a more detailed insight into failure
modes of the ML model under test. When ρ̂ is directly computed, we obtain no information on
which parts of X or Dx have caused the risk to increase. However, this information is invaluable for
uncovering weaknesses and improving the ML model. As an example, when the evaluation shows
that a given segmentation model misses pedestrians in images that contain noise that mimics rain,
this can initiate an analysis of whether images of that type are underrepresented in the training set
or whether the given ML architecture can in general not deal with that type of noise. For that, we
propose to interpret the different ρ̂i as KRIs of an ML model.
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A KRI describes the risk in one particular situation (Xi,Dxi) that may be part of the deployment
scenario of the ML model. This can be obtained by modeling a part of the environment. Furthermore,
in the adversarial setting, we can view a KRI as an indicator of the susceptibility of a given ML model
to a particular adversarial attack. In this way, comparing different KRIs allows to analyze both the
mode of action of different attacks as well as the failure modes of the ML model.

When computing ρ̂i, our main objective is the reusability of the inference results of the ML model,
since this is the computationally most expensive part. Therefore, we store the computation results in
the risk tensor R which is defined by

Ri,j,k,` = Li(fc(xj + δk,`)).

R is used to store the results for different loss functions Li, samples of the natural distribution xj ,
and different samples of a given noise distribution δk,`. The different elements are joined along the
different natural distributions and noise types to form the complete risk tensor R.

Note that a risk tensor Radv can be defined for the adversarial robustness use case. Since samples of
adversarial noise are typically created for one specific input, we can reduce the dimension of the risk
tensor and obtain

Radv
i,j,k = Li(fc(xj + δk,j)).

Here we have a one-to-one correspondence of the samples of the noise distribution to samples of the
natural image distribution.

Once R is computed, the different ρ̂i can be obtained by filtering R for distributions relevant for the
specific situation which is encompassed by ρ̂i and aggregating the different tensor elements. When
all ρ̂i have been computed, ρ̂ can be obtained as in (2).

5 Case Study

We demonstrate the feasibility and utility of our approach by computing the KRIs for a set of neural
image classifiers. Note that the KRIs we use in this study are based on well-known and rather
straightforward risk measures like the probability of class change to keep our results well-aligned
with state-of-the-art robustness investigations. In particular, we compare the KRIs of 20 residual
neural networks (ResNets), trained on the CIFAR10 Krizhevsky, Hinton, and others (2009) dataset to
investigate their respective robustness with respect to image corruptions and adversarial attacks.

We use different robustifying measures alongside changes in the ResNet depth to vary the ResNets
under study. In particular, we vary the training data augmentations by adding both Gaussian noise and
standard image augmentations implemented in Keras Chollet (2015), adding a regularization proposed
in Cisse et al. (2017), changing the training loss function to the robustifying guided complement
entropy loss Chen et al. (2019). Furthermore, we obtain a few ResNets from defensive distillation as
proposed in Papernot et al. (2016) performed at different distillation temperatures and by adversarial
training (both ensemble adversarial training Tramèr et al. (2018), and projected gradient descent
Madry et al. (2018) were tested). A description of the setup of each ResNet we study is provided in
Table 1.

We evaluate and compare the ResNets’ capability to cope with image perturbations induced by sensor
corruptions, random noise, weather phenomena, and adversarial attacks. For each image perturbation
type, we set up several distributions that represent each corruption scenario. For sensor corruptions,
we consider random changes in brightness and contrast. On top of that, we add shadows and rotations
of varying magnitude to the test images. Random noise is considered by adding distributions of
Gaussian, uniform and salt-and-pepper noise. We incorporate weather phenomena by adding randomly
generated layers of rain or fog to the test images. For the creation of adversarial perturbations, we use
the adversarial robustness toolbox Nicolae et al. (2019) to generate distributions that contain images
created with the fast gradient sign method Goodfellow, Shlens, and Szegedy (2015), the CarliniL2
method Carlini and Wagner (2017a), and the DeepFool attack Moosavi-Dezfooli, Fawzi, and Frossard
(2016), respectively.

A key feature of our approach is the hierarchical aggregation of the computed loss values. In our
study, the loss values are the probability of class changes, which can be aggregated with a mean value
function over the different noise types. As an example, in Figure 2a, we compare the class change risk
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# label # layers reg. augment. defense
1 NNet 72 - - -
2 NNetLarge 114 - - -
3 DistilledT10 72 - - distillation
4 DistilledT10Large 114 - - distillation
5 DistilledT100 72 - - distillation
6 DistilledT100Large 114 - - distillation
7 DistilledT10Augm 72 - std. image augmentations distillation
8 DistilledT100Augm 72 - std. image augmentations distillation
9 Gauss03 72 - Gaussian noise (σ = 0.03) -
10 Gauss09 72 - Gaussian noise (σ = 0.09) -
11 Gauss09Augm 72 - Gaussian noise (σ = 0.09) -
12 Gauss09Large 114 - Gaussian noise (σ = 0.09) -
13 GCE 72 - gce loss -
14 GCELarge 114 - gce loss -
15 ParsNet 72 parseval frame - -
16 ParsNetAugm 72 parseval frame std. image augmentations -
17 ParsNetLarge 114 parseval frame - -
18 AdvTrainFGSM 72 - - adv. training
19 AdvTrainPGD 72 - - adv. training
20 AdvTrainFGSMLarge 114 - - adv. training

Table 1: Description of ResNets used for KRI computation

of test images with brightness perturbations for the ResNets we study. These values are computed by

ρ̂br =
1

nsamples

∑
xi∈X

∑
δbr,`∈Dbr

Lcc(xi + δbr,`),

where Lcc is the indicator for a class change, X is the set of test images, and δbr,` is a sample from
the distributions of brightness perturbations.

The individual values ρ̂br for the different ResNets under study can be considered their brightness
corruption KRIs. On the other hand, we can summarize the risk values for all sensor perturbations
into a single sensor corruption KRI, by aggregating over all sensor corruption distributions. In this
way, the sensor corruption KRIs are computed by

ρ̂sc =
1

nsamples

∑
xi∈X

∑
Di∈Dsc

∑
δi,`∈Di

Lcc(xi + δi,`),

where Dsc is the set of all considered sensor corruption distributions. At this stage it is possible to
weight the different corruptions in order to mimic their given occurrence probability. In Figure 2b
we use these higher level KRIs to understand the effect of data augmentation on the robustness
of a ResNet. We can observe that by adding Gaussian noise and standard image augmentations or
adversarial noise to the training images, we can increase the robustness of the ResNets with respect to
random and adversarial noise by similar amounts. On the other hand, when we compare the standard
cross entropy loss to the guided complement entropy loss as in Figure 2c, we can observe that using
the guided complement entropy loss, we can significantly increase the robustness with respect to
adversarial noise. However, the vulnerability with respect to the other noise types stays approximately
the same.

Finally, we can merge all KRIs into the final risk value. In our study, we simply compute the mean
value over all KRIs. However, a more involved strategy to study a specific use case can also be
implemented. The final risk values are displayed in Figure 2d. On the basis of these values, an
informed choice of the ResNet associated with the minimal risk can be made.

6 Conclusion and Outlook

In this work, we have applied the risk definition from statistical decision theory to ML. On the basis of
this definition we have developed a framework that allows to specify different deployment scenarios
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Figure 2: Aggregated risk values

and penalties associated with failures of the ML model. This allows practitioners to evaluate the
risk of deploying a given ML model in a standardized way. Furthermore, the setup of deployment
scenarios gives regulatory authorities the chance design certificates for ML models in specified
environments.

In our preliminary numerical case study we have provided another motivation for using KRIs to
investigate ML model robustness, i.e. the investigation of the effect of different robustifying measures
on perturbations of different types. As an example, while adding data augmentations increased the
accuracy under random and adversarial perturbations, a change in loss function from cross entropy to
guided complement entropy only increased robustness for adversarial perturbations.

The application of the risk definition and the proposal for its efficient tensor based evaluation provide
the tools necessary for extensive analysis of ML models. It remains to create meaningful loss functions
and data distributions for different applications in which such a detailed analysis is required.
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